
1

Federated Learning-based Scheme for Detecting

Passive Mobile Attackers in 5G Vehicular Edge

Computing
Abdelwahab Boualouache* and Thomas Engel

FSTM- Faculty of Science, Technology and Medicine

SnT - Interdisciplinary Centre for Security, Reliability and Trust

University of Luxembourg, Esch-sur-Alzette, L-4365, Luxembourg

Email: {abdelwahab.boualouache, thomas.engel}@uni.lu

Abstract—Detecting passive attacks is always considered dif-
ficult in vehicular networks. Passive attackers can eavesdrop on
the wireless medium to collect beacons. These beacons can be
exploited to track the positions of vehicles not only to violate their
location privacy but also for criminal purposes. In this paper, we
propose a novel federated learning-based scheme for detecting
passive mobile attackers in 5G Vehicular Edge Computing. We
first identify a set of strategies that can be used by attackers
to efficiently track vehicles without being visually detected.
We then build an efficient Machine Learning (ML) model to
detect tracking attacks based only on the receiving beacons. Our
scheme enables Federated Learning (FL) at the edge to ensure
collaborative learning while preserving the privacy of vehicles.
Moreover, FL clients use a semi-supervised learning approach to
ensure accurate self-labeling. Our experiments demonstrate the
effectiveness of our proposed scheme to detect passive mobile
attackers quickly and with high accuracy. Indeed, only 20
received beacons are required to achieve 95% accuracy. This
accuracy can be achieved within 60 FL rounds using 5 FL clients
in each FL round. The obtained results are also validated through
simulations.

Index Terms—5G Vehicular Edge Computing; Machine Learn-
ing, Federated learning, Security, Privacy, Passive Attacker
Detection.

I. INTRODUCTION

We are at the dawn of a new era of vehicular networks.

Empowered by Artificial Intelligence (AI), connected vehicles

are currently self-driving [1]. In addition, by bringing the

cloud storage and processing capacities to the edge of the

network, the 5G-enabled Vehicular Edge Computing paradigm

has emerged [2]. This paradigm is addressing the limitations

of traditional vehicular networks and enables ultra-low-latency

and high bandwidth Vehicle-to-everything (V2X) applications.

Moreover, combined artificial intelligence with edge comput-

ing is bringing new sophisticated security and privacy solutions

for connected vehicles [3].

Connected vehicles frequently send safety messages, called

beacons or CAMs (Cooperative Awareness Messages). These

beacons are sent in clear-text and contain sensitive mobility

information of vehicles such as its identifier, position, speed,

and acceleration [4]. The purpose of these messages is to

provide awareness for vehicles about their surrounding en-

vironment. However, these messages can be easily collected

and exploited by passive attackers. Unlike active attackers

that can alter or inject false messages, passive attackers can

only eavesdrop on beacons for position tracking to know

every location visited by vehicles. The motivations of passive

attackers are ranging from curiosity and privacy violation of

drivers to tracking from criminal purposes [5]. For thwarting

tracking attacks, Standards Developing Organizations (SDOs)

recommend that connected vehicles use sets of pseudonyms

instead of fixed identifiers while broadcasting their safety

messages [6, 7]. Pseudonyms are generally temporal iden-

tifiers whose vehicles change them regularly to ensure the

unlinkability between their messages [7]. However, several

studies have demonstrated that a simple pseudonym change

is ineffective against a global passive attacker who eavesdrops

every message in the network [8]. For enforcing protection

against this attacker several pseudonym-changing strategies

have been proposed [9]. However, effective strategies have

many negatives impacts on safety-related applications [10]. On

the other hand, the assumption of a global passive attacker is

not realistic since the global coverage requires the deployment

of a large number of static sniffing stations, which not only

generates significant costs and efforts but also makes them

visually detected by authorities. Thus, a simple approach is

to use passive mobile attackers instead. These attackers can

be deployed on connected vehicles, which are already part of

the system, making them more difficult to detect than static

attackers. Unlike tracking using cameras [11], passive mobile

attackers rely on communication to track vehicles and can

employ a range of strategies to avoid being visually detected.

However, these strategies are not yet defined.

Recently, vehicular networks have benefited from the ad-

vances in machine learning in the areas of network security. In-

deed, several ML-based Misbehavior Detection Systems (ML-

based MDSs) have been proposed for the efficient detection

of internal attackers [12–20]. However, existing solutions have

only been proposed to detect active attackers since detecting

passive attacks is usually reported as impossible [21]. In

addition, most of the existing ML-based MDSs are adopting

a centralized learning approach to train their ML models, and

no updates are provided after deploying the model, which

limits the performance of these systems to enhance their ac-

curacy and detect unseen misbehaviors. Moreover, ML-based

MDS supporting ML model updates either (i) violates privacy

2

preservation of vehicles since multi parts share training data

sets [18, 19], or (ii) generates large overhead since distributed

learning requires large signaling overheads between peers to

achieve synchronization of ML Model updates[20].

To address the aforementioned issues, in this paper, we

propose a novel federated learning-based scheme for detecting

passive mobile attackers in 5G-enabled vehicular edge com-

puting. Our scheme defines strategies used by passive mobile

attackers to avoid being visually detected by their targets. It

also leverages an efficient position-based feature extraction

method to propose an accurate ML model for detecting passive

mobile attackers. Moreover, our scheme supports federated

collaborative learning enabling continuous enhancing of the

accuracy of the global model while preserving the privacy of

vehicles. On the one hand, FL servers are deployed on geo-

graphically distributed edge nodes and employ the Federated

averaging (FedAvg) algorithm to calculate the global model

weights. On the other hand, FL clients self-label unseen data

using a semi-supervised learning approach that is based on the

Gaussian Mixture algorithm and takes as input already labeled

data. Experiments and simulation demonstrate that our scheme

can achieve high accuracy within small FL rounds.

The main contributions of this paper can then be summa-

rized as follows:

• Based on federated learning, we propose a secure and

privacy-preserving architecture for detecting passive mo-

bile attackers in 5G-enabled vehicular fog computing.

• We propose a set of strategies that can be used by passive

mobile attackers for tracking their targets while avoid

being visually detected.

• We propose an algorithm for generating synthetic data

characterizing passive mobile attacks and an efficient

position-feature extraction method.

• To enable privacy-preserving collaborative learning, we

propose an accurate FL-based model for detecting passive

mobile attackers. This model leverages a semi-supervised

method to self-label data at FL clients and Federated

averaging (FedAvg) algorithm to calculate the global

model weights at FL servers.

• We carry out an extensive set of experiments to evaluate

the detection accuracy of our scheme and validate the

results through simulations.

The remainder of this paper is organized as follows. Related

works are described in Section II. The proposed federated

learning-based architecture for detecting passive mobile at-

tackers is presented in Section III. Section IV describes

different strategies used by passive mobile attackers. Section V

presents the algorithm proposed to generate synthetic data sets

and the method used to extract features. Section VI describes

the self-labeling and federated learning processes. Experiments

and obtained results are presented in Section VII. Section VIII

discusses the obtained results. Finally, a conclusion is given

in Section IX.

II. RELATED WORK

A. Passive attacker models

The complexity, heterogeneity, and large-scale of the V2X

communication system make it vulnerable to various types

of attackers. Understanding attacker models helps to develop

efficient attack detection and protection mechanisms. Raya et

al. [22] have identified four criteria to classify V2X’s attackers:

(i) Coverage (global vs. local): unlike a local attacker, a global

attacker has an overall coverage of the V2X system. It can

then eavesdrop every message broadcast by any vehicle, (ii)

Activeness (active vs. passive): an active attacker can alter or

inject messages, while a passive attacker can only eavesdrop

messages, (iii) Privileges (internal vs. external): an internal

attacker is an authenticated member in the V2X system while

an external attacker is considered as an intruder; and (iv)

intention (malicious vs. rational): while rational attackers aim

to achieve their interests, malicious attackers aims to destroy

the networks.

A global passive attacker is usually assumed to study the lo-

cation privacy in connected vehicles. Emara et al. [23] archived

90% of tracking success employing a simple tracking method

called the Nearest Neighbor Probabilistic Data Association

(NNPDA) [24]. Wiedersheim et al. [8] achieved almost 100%

tracking success considering an advanced tracking method

called Multi-Hypothesis-Tracking (MHT) [25] incorporating

with the Kalman filter. Feiri et al. [26] pointed out that due

to the cost of eavesdropping the global coverage is hard to be

achieved. Petit et al. [27] defined a new passive attacker model

called mid-sized adversary. The coverage of this attacker is

in between a local passive adversary and a global passive

adversary. Their real-world experiments have demonstrated

that the tracking success achieves 90% if only 8 sniffing

stations are used. Buttyán et al. [28] have also achieved 90%

of tracking success by deploying sniffing stations only at road

intersections and used a Bayesian decision algorithm as a

tracking method. However, all of these studies are based on

the deployment of easily detectable static sniffer stations. On

the contrary, passive mobile attackers are difficult to detect

because they exploit connected vehicles, which are part of the

system.

B. ML-based misbehavior detection systems

Several ML-based misbehavior detection systems have re-

cently been proposed for detecting internal attacks. In the

following, we describe the most relevant misbehavior detection

systems. Gyawli et al. [12] proposed an ML-based Misbehav-

ior System (MDS) for the detecting false alert and position

falsification attacks. The proposed MDS used a supervised

learning approach for building ML-models. For detecting false

alert attacks, a binary classifier was trained based on data sets

generated from emulating this attack on a simulator. Moreover,

for detecting false position attacks, a multi-class classifier was

trained based on VeRiMi data set [29]. Traditional classi-

fication algorithms were used to train the ML-models. The

classifiers were built offline and deployed on each connected

vehicle for attack detection. Quevedo et al. [13] proposed an

ML-based misbehavior detection system for detecting Sybil

attacks. A supervised learning approach was also adopted for

training ML-models. The training and detection of the attack

were performed on edge nodes. The collected data consists of a

set of matrices describing the driving patterns of vehicles. The

3

columns of matrices are the features considered for learning.

Each row of a matrix contains driving information of a vehicle

at time t. An unsupervised learning data dimensionality reduc-

tion technique was used to reduce the dimensions of matrices.

Extreme Machine Learning (EML) was used for classification

based on data set generated using SUMO mobility generator.

Le and Maple. [14] proposed a supervised learning approach

to detect false position attacks. This approach compares the

trajectory of vehicles with trajectories of legitimated vehicles.

Three features were proposed to compare the trajectories. Base

on the proposed features, a multi-class classifier was trained

on VeRiMi data set [29] to detect the five position-falsification

attacks. Two classifier algorithms (Support Vector Machine

(SVM) and k-Nearest Neighbors (KNN)) were tested based

on a MATLAB implementation. Tan et al. [15] proposed an

unsupervised learning approach to detect denial of service

attacks (DoS). RSUs (Road Side Units) collect the traffic flows

of vehicles, which is defined as a sequence of packets from the

source to the destination. Each flow contains σ packets with

the corresponding time series. The Agglomerate Hierarchical

clustering was applied for create clusters of similar traffic

flows. In each step of the clustering algorithm, the dynamic

time wraping distance [30] was used to calculate distance

between the time series of different traffic follow. Alheeti et al.

[16] proposed a supervised learning approach to detect Grey

hole and rushing attacks in connected vehicles. The data sets

were generated by simulating Grey-hole and rushing attacks

with an adapted version of AODV protocol on a network

simulator. 15 features were selected to train a binary classifier

for each attack. Two classification algorithms were used for

training: SVM, and Artificial Neural Network (ANN). Kim

et al. [17] proposed an ML-based MDS for software-defined

connected vehicles where vehicles analyze the incoming traffic

and forward some selected data flows to the Software Defined

Networking (SDN) controller. Based on these data flows, the

SDN controller trains a multi-class classifier using the SVM

classification algorithm. The parameters of the trained model

are forwarded to vehicles for using it in the detection of

misbehaving vehicles. Negi et al. [18] proposed an anomaly

detection system for connected vehicles. The proposed system

leverages on unsupervised learning approach based on Long

short-term memory (LSTM). The speed up the training of the

model over big data, the training was performed in a cluster

of servers instead of one server. Once the anomaly detection

model was trained, the parameters on this model are distributed

to vehicles for the real-time detection of anomalies. To keep

the model updated, the model was retrained over time based on

data newly collected and the parameters of the new model are

distributed to vehicles. Li et al. [19] proposed an ML-based

misbehavior detection system based on the transfer learning

approach. The idea is to transfer the knowledge acquired

building ML-models on a large on labeled data to build ML-

model with a small labeled data. This paper proposed two

solutions to update the ML-model: (i) Cloud assisted approach

where the unlabeled data is sent to the cloud for training

and updating the ML-model, and sending it back to vehicles

(ii) local update where each vehicle updates its ML-model

based on a pre-training model to assign pseudo-labels to data.

This pseudo-label data are then used after that to transfer

learning. Their experiments showed how to exploit knowledge

built from detecting injection and impersonation attacks for

detecting flooding attacks. Zhang et al. [20] proposed an ML-

based misbehavior detection scheme of network-level attacks

based on a distributed machine learning approach. The authors

supposed that each vehicle has its labeled data. The global ML-

model is collaboratively building between vehicles without

exchanging data sets between them. This scheme applies an

Alternating Direction Method of Multipliers (ADMM) to a

class of empirical risk minimization (ERM) problems for

training the global ML-model. Instead of sharing the data sets,

the vehicles share only updates of the loss functions.

Table I compares our scheme with related ML-based mis-

behavior detection schemes. Unlike the existing schemes, our

scheme is focusing on detecting passive mobile attackers. It

combines a semi-supervised approach for self-labeling data

in FL clients and the supervised learning for training and

updating the global ML model. Moreover, ML inference

location in our scheme is connected vehicles, since connected

vehicles are responsible for detecting and reporting passive

mobile attackers. On the other hand, our scheme adopts a

federated learning model, which, unlike the existing schemes

[18, 20], allows updating the global ML-model with ensuring

the privacy preservation and small overhead.

C. Federated Learning

Federated learning (FL) is a distributed machine learning

approach that enables collaboration between multiple parties

to jointly train a global model without sharing their data sets,

which mitigates privacy risks [31]. In the FL architecture

[32, 33], multiple FL clients cooperate with the FL server to

train a global ML-model. The training of the global model

is carried out within multiple rounds until the FL server

achieves a satisfactory global model. In each round, the FL

server selects a set of FL clients and sends them the model

obtained after the last round. Based on the received model,

each FL client uses its local labeled data set to calculate its

local updates of the global model using Stochastic Gradient

descent (SGD). After the end of the round, all the selected

FL clients send their local updates to the FL server. Once

all the updates are received, the FL server uses the Federated

averaging (FedAvg) algorithm to aggregate local updates for

calculating the global model. Federated learning has recently

been exploited in several V2X applications. Samarakoon et

al. [34] used the FL to estimate the tail distribution of the

network-wide queue lengths. Lu et al. (1) [35] proposed an

FL scheme for resource sharing in vehicular networks. Liu

et al. [36] proposed a FL scheme for traffic flow prediction

in vehicular networks. Lu et al. [37] discussed the benefits

of data sharing among vehicles for collaborative analysis in

vehicular networks. Lu et al. (2) [38] proposed a privacy-

preserving federated learning architecture for enhancing data

privacy. They also designed a two-phase mitigating scheme

consisting of intelligent data transformation and collaborative

data leakage detection. Yeet al. [39] discussed the use of FL for

image classification in vehicular Edge Computing. Our scheme

4

TABLE I: A comparison of our scheme with relevant state-of-the-art schemes.

Solution Attacks ML-type & Design Learning Model ML-Inference location
Model Privacy

Overhead
update preserving

Gyawli et al. [12]
False alert

Supervised Learning Centralized learning Connected vehicle No No Large
Position falsification

Quevedo et al. [13] Sybil Supervised learning Centralized learning Edge No No Large

Le and Maple [14] Position falsification Supervised learning Centralized learning Connected vehicle No No Large

Tan et al. [15] DoS Unsupervised learning Centralized learning RSU No No Large

Alheeti et al. [16] Grey hole and rushing Supervised learning Centralized learning Connected vehicle No No Large

Kim et al. [17] Network-level Supervised learning Centralized learning Connected vehicle No No Large

Negi et al. [18] Anomalies
Unsupervised

learning
Data center

Connected vehicles Yes No Large
distributed learning

Li et al. [19]
Network-level, Flooding Transfer learning

Centralized learning Connected vehicle
No

No Large
impersonation Supervised learning
data injection

Zhang et al. [20] Network-level
ADMM Peer-to-peer

Connected vehicle Yes Yes Large
Supervised learning distributed learning

Our Scheme Passive mobile
Supervised learning

Federated Learning Connected vehicle Yes Yes Small
Semi-supervised learning

considers an edge layer consisting of multiple nodes, where

each node controls a specific geographic region. Mowlaet

al. [40] proposed an FL based jamming attack detection

mechanism for flying ad hoc networks. Unlike [40], our exploit

federated learning for detecting passive mobile attacks in 5G

vehicular edge computing.

Table II presents the abbreviations and notations used

throughout the paper.

TABLE II: Abbreviations and notations used throughout the

paper.

Notation Description

AI Artificial Intelligence

V 2X Vehicle-to-everything

DoS Denial of Service

ANN Artificial Neural Network

SDN Software Defined Networking

FL Federated Learning

ML Machine Learning

MDS Misbehavior Detection System

AODV Ad-hoc On-demand Distance Vector

SVM Support Vector Machine

RSU Road-Side Unit

SGD Stochastic Gradient Descent

CR Communication Range

SD Safety Distance

CD Caution Distance

RD Reaction Distance

P Period

KNN k-Nearest Neighbors

LSTM Long short-term memory

ELM Extreme Learning Machine

CA Certifications Authority

FLS −DS FL Server Data Set

L− UDS Local Unlabelled Data Set

L− LDS Local Labelled Data Set

III. SYSTEM MODEL

As illustrated in Figure 1, we consider a federated learning-

based architecture for 5G-enabled vehicular edge comput-

ing consists of two layers. The infrastructure layer includes

vehicles and base stations equipped with V2X communica-

tion technologies. In this layer, communications are multi-

hop Vehicle-to-Vehicle (V2V). Vehicle-to-Infrastructure (V2I)

communications are used to communicate with the 5G-Edge

Base Station FL-Server FL-Client

Global ML Model Update

Mobile passive attacker

5G
 F

og
 L

ay
er

Fig. 1: Federated learning-based architecture for detecting

passive mobile attackers in 5G Vehicular Edge computing

Layer. Each vehicle periodically broadcasts a safety mes-

sage every t millisecond, where each message includes a

pseudonym, a position, a timestamp, the velocity, and content.

Since these messages are sent in clear, the passive mobile

attacks can easily exploit them to track the positions of

connected vehicles as described in Section IV.

The 5G Edge Layer mainly consists of FL servers connecting

through secure 5G links for sharing the global ML-model

updates. Each FL server manages a limited geographic zone

and communicates with selected FL clients (vehicles) within

this zone thorough secure 5G links. During the initialization

process, the Certification Authority (CA) delivers to vehi-

cles different credentials such as public and private keys,

and certificates. Vehicles use these credentials to ensure the

authentication/integrity of their messages and encrypt them

(if necessary). The interaction between an FL server and an

FL client is illustrated in Figure 2. The FL server has two

modules: (i) Model building, and (ii) Model updating. Also,

each vehicle has two modules: (i) Passive attacker detection,

and (ii) the FL Agent. The FL Agent module is only activated

if the FL server selects the vehicle as an FL client. The

internal design of the FL agent is described in Section VI.

5

The model building module uses synthetic labeled data set to

build an initial global ML-model. The processes of generating

synthetic data set and extracting features are described in

subsections V-A and V-B respectively. The model updating

module is used to update the global ML-model. In each round,

this module selects some vehicles to serve as FL clients and

sends the initialization parameters to their FL agent modules.

At the end of each round, the FL agents send their updates

to the FL server. The updated global model is shared with

all connected vehicles and deployed on their passive attacker

detection modules. The detection of passive attackers is only

based on received beacons. For each received beacon, the

features extraction process is applied and the ML model is

used to detect and classify passive attackers. Once the attack

is detected, the attackers are reported to CA for investigations

and taking the required actions.

FL-Server Data Set

FL-Server Global Model

Model Building

Model Updating

FL-Server

FL Agent

Detection Module

CA

Features
Extraction

Beacons

ML-Model
ML-Model Updated

Update

Initialization

Reporting

Vehicle

Fig. 2: The interaction between an FL server and an FL client

IV. PASSIVE MOBILE ATTACKERS STRATEGIES

Passive mobile attackers use their wireless interfaces to

collect safety messages broadcast by vehicles and use tracking

methods to link between the messages that belong to their

targets. Leveraging messages instead of cameras make tracking

much easier for these attackers. The basic approach used by

passive mobile attackers is usually to keep himself in the range

and a short distance from their targets to ensure the good re-

ception of beacons. However, passive mobile attackers can use

a set of strategies for preventing to be visually noticed by the

target. In the following, we identify strategies that can be used

by passive mobile attackers. These strategies are classified into

two categories: Single attacker and Collaborative attackers.

1) Single Attacker: In this category, only one single passive

mobile attacker is used to track the vehicle. Figure 3 (a)

illustrates an example of this attacker. he attacker (the red

vehicle) always keeps, at least, a caution distance between

itself and the target (the blue vehicle) and still inside the

attacker zone. This zone begins at the end of the caution

distance and ends at the maximum communication range of

the target. Inside this zone, several strategies can be applied

by the attacker to prevent to be visually noticed and detected

by the target. These strategies are listed below:

• Constant Strategy: In this strategy, the attacker tries to

keep exactly a caution distance between itself and the

target. This can be done by adapting its speed according

to the speed of the target.

• Attack-and-stop strategy: In this strategy, instead of

doing the tracking all the time, the attacker periodically

alternates between attack and no-attack modes. In the

attack mode, the attacker applies the constant strategy

while in the no-attack mode the attacker acts as an

ordinary vehicle.

• Random strategy: This strategy is a more advanced form

of attack-and-stop strategy. The same as the attack-and-

stop strategy, the attacker alternates between attack and

no-attack modes. However, in this strategy, the alternation

occurs randomly and not periodically.

2) Collaborative attackers: Unlike the first category, in

this category, multiple attackers collaborate for tracking of

the target. These attackers can synchronize and communicate

between them to accurately track the target and reduce the

probability of being visually detected. Each attacker of the

group of attackers can apply one of the strategies previously

mentioned in the first category. Depending on the environment,

two tracking collaborative strategies can be applied:

• Urban strategy: This strategy is convenient for the

urban environment, which is usually characterized by the

existence of road intersections. As shown in Figure 3

(b) collaborative attackers are deployed along with road

segments. Each attacker is used to track the target only

in one road segment.

• Highway strategy: This strategy is convenient for a

highway environment where several attackers alternate

to track the target. Figure 3 (c) illustrates the highway

strategy. Although three attackers are tracking the target,

they synchronize between them to ensure that only one

attacker is activated on one time to avoid their detection.

V. DATA SET AND FEATURE EXTRACTION

This section describes the process of generating synthetic

data for training and testing the initial global model. It also

describes how the features are extracted for providing fast and

accurate attack detection. The generation of synthetic data is

based on a set of algorithms emulating normal behavior and

attacker behaviors. The use of synthetic data allows developing

more accurate ML-models since synthetic data can encompass

all the envisioned scenarios [41]. Indeed, it is hard to cover

all the possible cases by simulations or by experiments [42].

On the other hand, for the feature exaction, we use an inter

distance-based approach to extract features from the synthetic

data and build a data set.

A. Synthetic Data Generation

The generation of synthetic data is based on the distance

between the target and the attacker. In practice, each vehicle

periodically stores the distance between itself and each of the

neighboring vehicles. Figure 4 illustrates the parameters used

to generate the synthetic data: (i) the maximum communica-

tion range (CR); (ii) the Safety Distance (SD); (iii) the Caution

Distance (CD), which is the distance that the attacker keeps

avoiding visual detection by the target; and (iv) the Reaction

6

(a) Single attacker

(b) Collaborative attackers: Urban strategy

(c) Collaborative attackers: Highway strat-
egy

Fig. 3: Passive attacker strategies

Distance (RD), which is an additional margin of distance that

the attacker may take while it is trying to adapt its speed with

the attacker’s speed to maintain the CD. This mainly occurs

when encountering obstacles like other vehicles.

Fig. 4: Parameters of synthetic data

Algorithm 1 shows the pseudo-codes of the algorithms

used to generate synthetic data. n is the number of normal

vehicles, m is the number of taken measures. nc is the number

of constant attackers, nas is the number of attack-and-stop

attackers, P is a period to switch between attack and no-attack

in the attack-and-stop strategy, nr is the number of random

attackers, ncl is the total number of collaborative attackers and

ng is the size of a group of collaborative attackers.

• Subroutine 1 is used to generate a trace of normal

vehicles. The variations of the inter-distance between

vehicles are random and can range from the limit of SD

to the limit of CR.

• Subroutine 2 is used to generate a trace of constant

attackers. As already mentioned this attacker tries to keep

a CD to avoid being noticed by the target. It always tries

to adapt its speed within the reaction zone to maintain

the CD.

• Subroutine 3 is used to generate a trace of attack-

and-stop attackers. This attacker periodically alternates

between attack and normal. P is the period used to switch

between the normal and the attack modes.

• Subroutine 4 is used to generate a trace to random

attackers. Unlike the attack-and-stop attacker, the attacker

randomly switches the normal and the attack modes.

• Subroutine 5 is used to generate a trace of collaborative

attackers. These attackers are organized in groups. At-

tackers of each group synchronize between them, where

each attacker uses a single attack strategy. For example,

in the pseudo-code, collaborative attackers use a constant

strategy. The pseudo-code applies the highway strategy

since the urban strategy consists of single attackers geo-

graphically distributed, which can be generated using the

previous subroutines.

B. Feature selection

To use machine learning, we need to extract features that

contain information on the variation of inter-distance between

vehicles. Figures 5 illustrates the variation of the inter-distance

between a vehicle and its neighbors. Each curve shows the

inter-distance between the vehicle and a given neighbor. The

black curves are normal while the red curves are suspicious

since the inter-distances are stable, which can be interpreted

as constant attackers.

In our scheme, we use a signal sampling technique to

extract features representing the variation of inter-distances

between vehicles. Specifically, this technique converts the

inter-distance trace to a sequence of samples where each

sample serves as one feature for the data set. Figure 6 shows

an example of the process of feature extraction from the

inter-distance trace. The sampling process is monitored by

two parameters: the sampling length (∆) and the sampling

interval (δ). First, It divides the trace into δ fragments. Then,

it calculates inter-distance (xi) for each fragment. The obtained

consecutive ∆ samples represent the feature vector X =
[xi+1, xi+2....., xi+j ,, xi+∆]. As in signal processing, the

smaller the sampling interval is, the higher fidelity the features

can achieve to represent the original signal, and, in this case,

the inter-distance variation.

Time(s)

Di
sta

nc
e (

m)

0
10

20
30

40
50

60
70

80
90

10
0

11
5

13
0

14
5

0 5 10 15 20 25 30 35 40 45 50 55 60

Normal
Suspecious

Fig. 5: The variation the distance between a vehicle and its

neighbors

7

Algorithm 1: Generation Synthetic Data

22 Initialize

3 n, m, nc, nas, P , ncl, ng , CR, SD, CD, RD;

55 Subroutine 1 — Generate normal traces
Data: n, m, CR, SD

Result: Normal attackers data (N)

6 while i < n do

7 while j < m do

8 N [i,j] ← SD + Rand()% (CR-SD) ;

9 end

10 end

1212 Subroutine 2 — Generate constant attackers traces
Data: nc, m, CD, RD

Result: Constant attackers data (C)

13 while i < nc do

14 while j < m do

15 C [i,j] ← CD + Rand() % RD ;

16 end

17 end

1919 Subroutine 3 — Generate attack-and-stop attackers traces
Data: nas, m, CD, RD, P

Result: Attack and stop attackers data (AS)

20 while i < nas do

21 while j < m do

22 if if ((j/P) % 2)==0 then

23 AS [i,j] ← CD + Rand() % RD ;

24 else

25 AS [i,j] ← CD + Rand() % (CR-CD) ;

26 end

27 end

28 end

3030 Subroutine 4 — Generate random attackers traces
Data: nr , m, CD, RD

Result: Random attackers data (R)

31 while i < nr do

32 while j < m do

33 if if (Rand () % 2)==0 then

34 AS [i,j] ← CD + Rand() % RD ;

35 else

36 AS [i,j] ← CD + Rand() % (CR-CD) ;

37 end

38 end

39 end

4141 Subroutine 5 — Generate collaborative attackers traces
Data: ncl, ng ,m, CD, RD,SD,CR

Result: Collaborative attackers data (CL)

42 g=nbcl / nbg ;

43 while i < g do

44 while k < nbg do

45 while j < m do

46 if if ((j >= k ∗ (m / nbg)) and (j < ((k+1) ∗ (m /
nbg)))) then

47 CL [i,j] ← CD + Rand() % RD ;

48 else

49 CL [i,j] ← SD + Rand()% (CR-SD) ;

50 end

51 end

52 end

53 end

Fig. 6: Trace sampling

VI. SELF-LABELING AND FEDERATING LEARNING

In this section, we describe the process of updating the

global model. The periodic updates of the global model

enhance the detection capabilities of our scheme. Thanks

to federated learning, these updates are performed with a

small overhead and are protected from privacy risks. Figure 7

illustrates the internal design of an FL agent and the process

of updating the global model. As we can see the FL agent has

two internal components: self-labeling and model update. The

FL agent has also two operating modes: passive and active.

In the passive mode, the FL agent keeps collecting beacons

and links them with their corresponding pseudonyms. If the

number of linked beacons of a given pseudonym is enough, the

FL agent applies the feature extraction process as described in

subsection V-B and stores the feature vector in a database of

unlabelled data set. When the FL server selects the connected

vehicle as an FL client, its FL agent will turn to the active

mode. In this mode, the FL Agent starts interacting with the

model update module. It will then receive an initial data set

and current parameters of the global model from this it. The

received data set will be used by the self-labeling component

to label the unlabeled data as described in subsection VI-A.

Once the data is labeled, the model update component takes it

with received parameters as input to update the global model.

The whole process update of the global model is described

in subsection VI-B. These updates are sent to the FL server

as soon as finalized. The database of local unlabeled data is

periodically purged to save the storage space of the vehicle.

Global FL Server Model
+

FL Server Data Set

Model Updating

FL Agent

FL-Server
Configuration

Features
Extraction

Local
Unlabeled

Data

Beacons

Self-labeling

ML Model Update
Updated ML Model

Local Labeled Data

FL
 S

er
ve

r D
at

a
Se

t

Global FL Server Model

Fig. 7: FL Agent internal design and Global ML-model update

process.

A. Self-labelling

In this section, we describe the process of self-labeling.

To label the unlabeled data set we use a semi-supervised

approach. Figure 8 illustrates the proposed approach. For

the visualization purpose, we apply the Principal Component

Analysis (PCA). Figure 8 (a) shows the data after applying

the Gaussian mixture clustering algorithm on the labeled data

received from the FL server. Each cluster corresponds to an

attack class. In Figure 8 (b) we combine the labeled data set

received from the FL server and unlabeled data locally stored

in the FL client and apply the Gaussian mixture clustering

algorithm again. In the Figure, the black points are the

8

unlabeled data that need to be matched to the corresponding

classes.

�� � �
�������
�������������

��

��

��

��

�

�

�

�

�

��
��
��
�

���
��

��
��

��
��

�
�
���������
���������
���������
��������

�� � �
�������
�������������

��

��

��

��

�

�

�

�

�

��
��
��
�

���
��

��
��

��
��

���
���������
���������
���������
��������
	��
�����

Fig. 8: Semi-supervised learning for self-labelling

To achieve this, we propose a matching algorithm that

matches the unlabelled data to the corresponding classes.

Algorithm 2 illustrates our proposed self-labeling algorithm.

This Algorithm takes the labeled data set received from FL

server (FLS-DS) and the Local Unlabeled Data Set (L-UDS)

as input and returns the Local labelled Data set (L-LDS) as an

output. The algorithm starts by extracting the labels and feature

vectors from FLS-DS in steps 5 and 4 respectively. In step 7,

the feature vectors of FLS-DS are combined with L-UDS to

build a new data set (DS). In Step 8, the Gaussian Mixture

clustering algorithm is applied to extract the cluster labels of

FLS-DS and L-UDS respectively. Step 9 links the clustering

labels and ground truth labels. The mapping function is based

on trying all possible rearrangements of the clusters labels

to see which of them best fit the ground truth vector. The

result of the mapping function is a mapping scheme between

the cluster labels and the ground truth labels. In step 10, this

mapping scheme is used to find the correct label of each vector

of the unlabeled data leveraging on the cluster label.

Algorithm 2: Self-labeling procedure

22 Self-labelling
3 Input: FL Server Data Set (FLS-DS), Local Unlabelled

Data Set (L-UDS)
4 Output: Local Labelled Data Set (L-LDS)
5 FLS −DS Lbls ←− Get labels(FLS −DS)
6 FLS −DS Features ←− Get features(FLS −DS)
7 DS ←− Combine (L− UDS, FLS −DS Features)
8 FLS−DS C, L−UDS C ←− GaussianMixture(DS)
9 Map sch ←− Mapping(FLS −DS Lbls,

FLS −DS C)
10 L−LDS ←− Match(Map sch,L−UDS,L−UDS C)

B. Federated Learning

As already mentioned in subsection II-C, updating the

global model is carried out within several rounds. Each round

has three main steps: (i) FL client selection, (ii) Local update,

and (iii) Global model averaging. To avoid model bias, we

propose that, in each round, FL servers select new FL clients,

which are not already selected in previous rounds. In addition,

we assume that Dk is a local data set of an FL client k

and nk = | Dk |. Dk consists of pairs of features and

labels, (xi,yi), i = 1, ..., nk for local nk data points given

n global data points trained in the round. This allows each

of FL clients locally calculates the weights update of the

global model using its local nk data points as described in

subsection VI-B1. Finally, getting weights updates from all

FL clients allows the FL server to calculate the updated global

model using the federated averaging algorithm as described in

subsection VI-B2. Federated learning functions are described

in Algorithm 3.

1) Local Update: An FL client k calculates a local update

of the model with a finite sum objective of the form,

min
ω∈Rd

Lk(ω) (1)

Lk(ω) is a loss function that is to be minimized with respect

to ω. Lk(ω) is calculated over nk data points using the formula

(2):

Lk(ω) =
1

nk

∑

i∈Dk

fi(ω) (2)

where,

fi(ω) = f(xi, yi;ω) (3)

fi(ω) = ℓ (xi,yi,ω) is the loss of the prediction on the data

point (xi,yi) made with model parameters ω. As shown in FL-

ClientUpdate function, an FL client (k) splits nk data points

into B sized batches in step 6. The received global model is

locally trained on E epochs in steps (7-11). In each epoch e, a

local vector of weights ω ∈ Rd is updated over all the set of

batches b. The update of the vector of weights is performed

in step 9, where η is the learning rate and ∆ ℓ (ω; b) is the

gradient of the local objective function of the client k.

Algorithm 3: Federated learning processes

22 FL-ClientUpdate(k, ω)
3 Input: nk

4 Output: ωk

5 Extract nk feature set (xi,yi)
6 b ←− Split data nk into batches of size B
7 for each local epoch e from 1 to E do
8 for b ∈ B do
9 ω ←− ω - η ∆ ℓ (ω;b)

10 end
11 end

12 return ωk to server
1414 FL-ServerUpdate ()
15 Input: ω0

16 Output: ω
17 Initialize ω0

18 for each round r =1,2,... do
19 K ←− desired number of FL clients
20 for each client k ∈ K do

21 ωk

r+1 ←− FL-ClientUpdate(k, ω)
22 end

23 ωr+1 ←−
∑

K

k=1

nk

n
ωk

r+1

24 ω ←− ωr+1

25 end

9

2) Global Model Averaging: The global model is aggre-

gated at the FL server, which has the following global model

objective:

min
ω∈Rd

l(ω) =
1

n

n∑

i=1

fi(ω) (4)

where,

l(ω) =

k∑

i=1

nk

n
Lk(ω) (5)

Lk(ω) denotes the objective function of an FL client k.

Formula 5 gives a weighted average from all of the K FL

clients since nk can vary among the K clients. As shown in

FL-ServerUpdate function, the FL server starts by initializing

the weights of the global model in Step 17. Then, in each r

round and for each client k ∈ K, ωk
r+1 is updated by the FL-

ClientUpdate(k, ω) in step 21. At the end of each round r, the

federated averaging algorithm is used to derive the weighted

averaging of the aggregated client updates as follows:

ωr+1 =

K∑

k=1

nk

n
ωk
r+1 (6)

ωr+1 is the global weight at round r + 1 for a total of K

FL clients over a total of n data points.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our scheme.

This section is divided into five subsections. First, we describe

the metrics used in our evaluations. Second, based on the

synthetic data generated using Algorithm 1, we build and

compare two multi-class classifiers for defining the global

model to deploy on FL servers. Third, we evaluate the self-

labeling algorithm presented in subsection VI-A. Fourth, we

evaluate federated learning functions presented in subsec-

tion VI-B. Finally, we validate the obtained global Model

thorough simulations.

A. Evaluation Metrics

Various evaluation metrics are used in our evaluation. In

the following, we give the calculating formula for each metric

with a short description:

• Accuracy is the ratio of the correctly detected passive

attackers to the total of vehicles.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

• Precision calculates the ratio of correctly detected passive

attackers to the total detected passive attackers.

Precision =
TP

TP + FP
(8)

• Recall calculates the ratio of correctly detected passive

attackers to the total actual passive attackers.

Recall =
TP

TP + FN
(9)

F1-score can be interpreted as a weighted average of

precision and recall.

F1− score = 2X
Precision ∗Recall

Precision+Recall
(10)

B. ML-Model Building

In this section, we consider that ML models are centrally

trained. In this experiment, we train two multi-class classifiers

and evaluate their effectiveness in detecting passive mobile

attackers. Both of the two multi-class classifiers consider

single and collaborative attacks. However, the first multi-class

classifier (MC-1) considers collaborative attackers as groups,

while the second multi-class classifier (MC-2) deals with

each collaborative attacker individually as a single attacker.

To generate data for training and testing these multi-class

classifiers, we leverage the algorithm presented in subsec-

tion V-A. This Algorithm was implemented using Python 3.

Table III presents the parameters used to generate data. By

combining these parameters and considering 200 instances of

each configuration, we have ended up generating 22000 rows.

We have also created a python-based Jupyter notebook for

data prepossessing and feature extraction applying the method

presented in Section V-B. We initially considered that the

size of the feature vector equals 100. For training and testing

the multi-classifiers the supervised algorithms implemented in

Scikit-learn literary.

TABLE III: Data Set Parameters

Parameter Value

Safety Distance (SD) 3 m
Caution Distance (CD) {50,60, ..., 150} m
Communication Range (CR) {400,500} m
Reaction Distance (CR) 10 m
p 5s

Table IV shows the multi-class classification results of

MC-1 considering various metrics. The results show that the

Random Forest classification algorithm gives almost 100 %

accuracy.

TABLE IV: Multi-class classification results of MC-1 (number

of features = 100)

Model Accuracy Precision Recall F1 score

Logistic Regression 0.395 0.37 0.4 0.38
KNN 0.46 0.43 0.33 0.34
SVM 0.67 0.67 0.67 0.665
Naive Bayes 0.66 0.65 0.66 0.65
Decision Tree 0.83 0.825 0.83 0.83
Random Forest 0.99 0.99 0.99 0.99

To determine the minimum number of features required to

detect passive mobile attackers, we variate the number the

features and evaluate the performance of MC-1. Figure 9

illustrate the evolution of the accuracy versus the number of

features of the three best performing classification algorithms

in our experiment. The obtained results confirm that the

10

Random Forest classifier performs better whatever the number

of features is. However, at least 60 features are needed to

achieve 90% accuracy.

0 20 40 60 80 100
Nomber of features

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

rac
y

Decision Tree
SVM
Random Forest

Fig. 9: Accuracy of MC-1 versus the number of features

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Constant

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) Attack-and-Stop

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) Random

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(d) Collaborative

0 20 40 60 80 100
Nomber of features

0.6

0.8

1.0

P
re

ci
si

o
n

Precision

Random Forest

0 20 40 60 80 100
Nomber of features

0.6

0.8

1.0

R
ec

al
l

Recall

Random Forest

0 20 40 60 80 100
Nomber of features

0.6

0.8

1.0

F
1-

S
co

re

F1-Score

Random Forest

0 20 40 60 80 100
Nomber of feature

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Precision

Random Forest

0 20 40 60 80 100
Nomber of features

0.6

0.8

1.0

R
ec

al
l

Recall

Random Forest

0 20 40 60 80 100
Nomber of features

0.6

0.8

1.0

F
1-

S
co

re

F1-Score

Random Forest

0 20 40 60 80 100
Nomber of features

0.6

0.8

1.0

P
re

ci
si

o
n

Precision

Random Forest

0 20 40 60 80 100
Nomber of features

0.4

0.6

0.8

1.0

R
ec

al
l

Recall

Random Forest

0 20 40 60 80 100
Nomber of features

0.6

0.8

1.0

F
1-

S
co

re

F1-Score

Random Forest

0 20 40 60 80 100
Nomber of features

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Precision

Random Forest

0 20 40 60 80 100
Nomber of features

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

Recall

Random Forest

0 20 40 60 80 100
Nomber of features

0.4

0.6

0.8

1.0

F
1-

S
co

re

F1-Score

Random Forest

Fig. 10: Precision, Recall, and F1-score of MC-1 versus the

number of features

N
or
m
al

C
on

ta
nt

A
tta

ck
-a
nd

-s
to
p

R
an

do
m

C
ol
la
bo

ra
tiv
e

Collaborative

Random

Attack-and-stop

Contant

Normal

735 15 0 52 485

74 0 2 1225 28

0 0 1311 0 0

0 1375 0 0 0

941 0 0 67 290

(a) Number of Features = 20

N
or
m
al

C
on

ta
nt

A
tta

ck
-a
nd

-s
to
p

R
an

do
m

C
ol
la
bo

ra
tiv
e

Collaborative

Random

Attack-and-stop

Contant

Normal

1 0 0 0 1286

30 0 0 1296 3

0 0 1311 0 0

0 1375 0 0 0

1281 0 0 17 0

(b) Number of Features = 100

Fig. 11: Confusion matrices

Figure 10 shows the precision, the recall, and F1-score

of MC-1 versus the number of features obtained for each

attack. Figure 10 (a) shows that, for the constant attack,

20 features are sufficient to obtain almost 100 % of each

evaluation metrics. Figure 10 (b) shows that the attack-and-

stop is detected faster than the constant attack. Indeed, only 15

features are needed to detect the attack (100 % of each of the

evaluation metrics). Figure 10 (c) shows that the random attack

is a bit difficult to detect than the two previous attacks. Indeed,

with 20 features, we obtain almost 90% of each evaluation

metrics. However, this percentage incrementally increases with

the increase in the number of features. Figure 10 (d) shows

that the collaborative attack is more difficult to detect than

the previous attacks (single attacks). Indeed, 85 features are

needed to reach 85% of each evaluation metric, and 95 features

to reach 100%. The reason for these results can be explained

by the confusion matrix shown in Figure 11. As we can see,

with 20 features, MC-1 confuses the collaborative with normal

behavior and the constant attack. However, with 100 features,

MC-1 can accurately distinguish these attacks. The speed of

attack detection depends on the number of features. Indeed,

the fewer features required to detect the attack, the faster the

attack detection. The evaluation results of MC-1 show that

single attackers are detected more quickly than collaborative

attackers if the latter are viewed as groups. However, since

collaborative attackers combine a set of single attackers, we

train another classifier (MC-2) that deals with collaborative

attackers as single attackers instead of as groups. Table V

shows the multi-class results of MC-2 using 20 features. As

we can see the random forest classification algorithm also

provides the highest results for MC-2. The results show that

97% accuracy is achieved by MC-2 using 20 features, which

is better than MC-1 using the same number of features as

shown in Figures 12. These results demonstrate that it is better

to consider collaborative attackers as single attackers to build

the global model for federated learning.

11

TABLE V: Multi-class classification of all attacks (20 Fea-

tures) without the collaborative attacks (MC-2)

Model Accuracy Precision Recall F1 score

Logistic Regression 0.52 0.52 0.52 0.51
KNN 0.79 0.80 0.79 0.77
SVM 0.87 0.87 0.87 0.87
Naive Bayes 0.81 0.81 0.81 0.81
Decision Tree 0.89 0.89 0.89 0.89
Random Forest 0.97 0.97 0.97 0.97

Accuracy Precision Recall F1-score0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

MC-1
MC-2

Fig. 12: Comparison between MC-1 and MC-2 (20 features)

C. Self-labeling Evaluation

In this section, we evaluate the self-labeling solution pro-

posed in subsection VI-A. To carry out this evaluation, we

have generated novel unlabeled data set using Algorithm 1.

As discussed in subsection VI-A, the self-labeling consists of

mixing already labeled data with unlabeled data sets to label

the unlabeled data set. In Figure 13, we evaluate the ratio of

the size of the unlabelled data to the size of the labeled data

that allows obtaining good accuracy. Accordingly, we consider

different values of ratio ranging from 2% to 30% and measure

the accuracy for each ratio. As shown in Figure 13, the best

accuracy results are 80% obtained at the ratio 20%.

0 5 10 15 20 25 30
Ratio (%)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

Fig. 13: Accuracy of proposed self-labeling solution versus

ratio

D. Federated Learning Evaluation

In this section, we train and test a global model for

detecting passive mobile attackers using a federated learning

approach as described in subsection VI-B. The federated

learning architecture was implemented using Tensorflow and

Keras Python libraries. The global model was trained on a

single machine equipped with 12 CPU and 15 GO of RAM.

FL clients have been implemented as Tensorflow instances

running local models. For the multi-class classification, we use

a Multi-Layer Perceptron (MLP) model with four layers. The

MLP model consists of one input layer and one output layer

(softmax is used as an activation function) and two hidden

layers (RELU is used as an activation function) each of them

has 10 units. To calculate the weights of local models we use

the Stochastic Gradient Descent (SGD). The loss function is

the categorical cross-entropy and the learning rate equals to

0.01. We also optimize the decay parameter, which controls

how the learning time change over time. Indeed, we decay

the learning rate with respect to the number of rounds rather

than the number of epochs. The Federated Averaging is used

after each round to calculate the weight of the global model as

described in subsection VI-B. In this evaluation, we consider

two data sets (DSs): small Data DS and large DS, which ten

times larger than the small DS. We also variate the number of

selected FL clients in each round. These values are considered

2, 5, and 10 FL clients.

Figure 14 shows the obtained accuracy values versus the

number of rounds. The figure shows, after only 190 rounds,

all the configurations achieve more 90% accuracy. It also

shows that using a large DS allows getting high accuracy

values with fewer rounds than using a small DS. Indeed,

more than 93% accuracy is achieved with only 60 rounds

using a large DS. Moreover, the Figure shows the number

of FL clients selected each round is an influencing factor on

accuracy values, and the number round required to archive

higher accuracy. For example, 5 FL clients on the large DS,

more than 95% accuracy can be achieved in only within 60

rounds while this accuracy cannot be achieved using 2 FL

clients in the same number of rounds.

0 500 1000 1500 2000 2500 3000
Number of rounds

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Small DS, 2 FL clients
Small DS, 5 FL clients
Large DS, 2 FL clients
Large DS, 5 FL clients

Fig. 14: Accuracy using federated learning

12

E. Simulations

We have also carried out simulations to validate our pro-

posed model. These simulations are conducted using Veins

Simulation Framework [43]. Veins is an inter-vehicular com-

munication simulation framework based on OMNet++ bi-

directionally coupled with SUMO road traffic simulation [44].

Table VI summarizes the parameters considered in our simu-

lations.

Parameter Value

Communication technology IEEE802.11p
Simulation duration 600 s
Communication Range (CR) 500 m
Beacon Interval 1 s
Number of constant attackers 10
Number of random attackers 10
Number of attack-and-stop attackers 10
Caution Distance (CD) 100 m
Reaction Distance (RD) 10 m
P 30s

TABLE VI: Simulation Parameters

We consider the case of a freeway road. We simulate

a 2-lane straight road section of 12 Km. The mobility of

vehicles was generated using SUMO. We have considered

three scenarios corresponding to the three single passive

attacks. In each scenario, ten attackers are trying to track one

target. The inter distances between the target were collected.

Based on this data, the feature extraction was applied. Only

20 features were used to detect the attack using the model

previously developed. Figure 15 shows the accuracy obtained

from detecting simulated attacks. We obtain 93% accuracy in

detecting all attackers. In particular, attack-and-stop attackers

are detected accurately than other attackers. Indeed, we obtain

100% accuracy in detecting attack-and-stop attacks.

Contant Attack-and-Stop Random0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

Fig. 15: Accuracy of detecting simulated attacks

VIII. DISCUSSION

In this section, we discuss the technical aspects of our

scheme. We also discuss the obtained results and give some

recommendations.

Our scheme allows detecting passive mobile attackers based

on their broadcast beacons. Since the time between two

consecutive beacons is less than 1s, the feature extraction is

quickly performed. Consequently, the attackers are detected

fast. However, some attack behaviors could be similar to

normal behaviors. For example, when two communicating

vehicles keep the same speed for some time, the system

could interpret this as a constant attack since the inter-distance

between them remains unchanged. To avoid these false posi-

tives cases, vehicles should continue monitoring the suspicious

vehicles for a certain period before reporting them to CA.

On the other hand, in our scheme, the global ML model was

build based on synthetic data. As previously mentioned using

synthetic data can encompass all the envisioned scenarios,

which are hard to cover through simulations or experiments.

Generating synthetic data could also be guided by real traffic

data to avoid implausible data.

From a security perspective, our scheme ensures that all

FL-servers and selected FL clients (vehicles) are authenticated

by the Certification Authority (CA). In addition, our scheme

considers that all the communications links between FL clients

and FL servers and between FL servers themselves are secure

to protect gradients from any modification. On the other hand,

the incentive is naturally ensured by our scheme since we are

in a win-win situation .i.e vehicles aim to accurately detect

who track their positions, they will be happy to participate in

the scheme as FL client to enhance the detection accuracy.

Our scheme is also privacy-preserving at different levels.

Since federated learning is used, local private are not shared

with edges nodes, which allows preserving location privacy

of vehicles. Moreover, reporting potential attackers to CA

is performed using their pseudonyms. Only CA can link

pseudonyms to real identifiers of attackers.

Furthermore, our scheme is scalable and can manage the

mobility of vehicles. The experiments show that our scheme

can achieve high accuracy in a few rounds. Indeed, if five FL

clients each round, accuracy can reach 95% in only 60 rounds.

This number of rounds can easily be achieved using the

synchronization between FL servers as described in section III.

On the other hand, our self-labeling approach archives 80%

accuracy, which is a good accuracy value that can be enhanced

in our future works.

IX. CONCLUSION

This paper proposed a scheme for detecting passive mo-

bile attacks in 5G Vehicular Edge Computing. This scheme

leverages federated learning to enable secure and privacy-

preserving collaborative learning for building an efficient

global ML model to detect passive attackers. Moreover, by

deploying FL servers at the edge, our scheme offers fast in-

teraction with FL clients, which use semi-supervised learning

to self-labeling data. Experiments have demonstrated that our

solution can detect passive mobile attacks quickly and achieve

higher detection accuracy in a short time. To the best of

our knowledge, we are the first to propose a passive mobile

attacks detection scheme for connected vehicles. As future

work, we plan to perform some enhancements and carry out

more simulations.

13

ACKNOWLEDGMENT

This work was supported by the 5G-INSIGHT bilateral

project, (ANR-20-CE25-0015-16), funded by the Luxembourg

National Research Fund (FNR), and by the French National

Research Agency (ANR). This work is also supported by the

5G-MOBIX project. This project has received funding from

the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 825496. Content re-

flects only the authors’ view and European Commission is not

responsible for any use that may be made of the information

it contains.

REFERENCES

[1] “Autopilot — Tesla,” https://www.tesla.com/autopilot, accessed: 2020-
09-02.

[2] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular edge
computing and networking: A survey,” arXiv preprint arXiv:1908.06849,
2019.

[3] J. A. Onieva, R. Rios, R. Roman, and J. Lopez, “Edge-assisted vehicular
networks security,” IEEE Internet of Things Journal, vol. 6, no. 5, pp.
8038–8045, 2019.

[4] D. Eckhoff and C. Sommer, “Driving for big data? privacy concerns
in vehicular networking,” IEEE Security & Privacy, vol. 12, no. 1, pp.
77–79, 2014.

[5] “Criminals use technology to track victims,” https://www.timesdaily.
com/archives/criminals-use-technology-to-track-victims, accessed:
2020-09-02.

[6] J2945/1, “On-board system requirements for V2V safety communica-
tions,” SAE Standards, 2016.

[7] ETSI TR 103 415, “Intelligent Transport Systems (ITS); security;
pre-standardization study on pseudonym change management,” ETSI

standards, 2018.
[8] B. Wiedersheim, Z. Ma, F. Kargl, and P. Papadimitratos, “Privacy

in inter-vehicular networks: Why simple pseudonym change is not
enough,” in 2010 Seventh international conference on wireless on-

demand network systems and services (WONS). IEEE, 2010, pp. 176–
183.

[9] A. Boualouache, S.-M. Senouci, and S. Moussaoui, “A survey on
pseudonym changing strategies for vehicular ad-hoc networks,” IEEE

Communications Surveys & Tutorials, vol. 20, no. 1, pp. 770–790, 2017.
[10] S. Lefevre, J. Petit, R. Bajcsy, C. Laugier, and F. Kargl, “Impact of

v2x privacy strategies on intersection collision avoidance systems,” in
Vehicular Networking Conference (VNC), 2013 IEEE, Dec 2013, pp.
71–78.

[11] H. Chen, B. Guo, Z. Yu, and Q. Han, “Crowdtracking: Real-time
vehicle tracking through mobile crowdsensing,” IEEE Internet of Things

Journal, vol. 6, no. 5, pp. 7570–7583, 2019.
[12] S. Gyawali, Y. Qian, and R. Q. Hu, “Machine learning and reputation

based misbehavior detection in vehicular communication networks,”
IEEE Transactions on Vehicular Technology, 2020.

[13] C. H. Quevedo, A. M. Quevedo, G. A. Campos, R. L. Gomes, J. Ce-
lestino, and A. Serhrouchni, “An intelligent mechanism for sybil attacks
detection in vanets,” in ICC 2020-2020 IEEE International Conference

on Communications (ICC). IEEE, 2020, pp. 1–6.
[14] A. Le and C. Maple, “Shadows don’t lie: n-sequence trajectory inspec-

tion for misbehaviour detection and classification in vanets,” in 2019

IEEE 90th Vehicular Technology Conference (VTC2019-Fall). IEEE,
2019, pp. 1–6.

[15] H. Tan, Z. Gui, and I. Chung, “A secure and efficient certificateless
authentication scheme with unsupervised anomaly detection in vanets,”
IEEE Access, vol. 6, pp. 74 260–74 276, 2018.

[16] K. M. A. Alheeti, A. Gruebler, and K. D. McDonald-Maier, “On the
detection of grey hole and rushing attacks in self-driving vehicular
networks,” in 2015 7th Computer Science and Electronic Engineering

Conference (CEEC). IEEE, 2015, pp. 231–236.
[17] M. Kim, I. Jang, S. Choo, J. Koo, and S. Pack, “Collaborative security

attack detection in software-defined vehicular networks,” in 2017 19th

Asia-Pacific Network Operations and Management Symposium (AP-

NOMS). IEEE, 2017, pp. 19–24.
[18] N. Negi, O. Jelassi, H. Chaouchi, and S. Clemençon, “Distributed online

data anomaly detection for connected vehicles,” in 2020 International

Conference on Artificial Intelligence in Information and Communication

(ICAIIC). IEEE, 2020, pp. 494–500.
[19] X. Li, Z. Hu, M. Xu, Y. Wang, and J. Ma, “Transfer learning based in-

trusion detection scheme for internet of vehicles,” Information Sciences,
2020.

[20] T. Zhang and Q. Zhu, “Distributed privacy-preserving collaborative
intrusion detection systems for vanets,” IEEE Transactions on Signal

and Information Processing over Networks, vol. 4, no. 1, pp. 148–161,
2018.

[21] A. König, R. Ackermann, M. Hollick, and R. Steinmetz, “Geographi-
cally secure routing for mobile ad hoc networks: A cross-layer based
approach,” 2007.

[22] M. Raya and J. Hubaux, “Securing vehicular ad hoc networks,” Journal

of Computer Security, vol. 15, no. 1, pp. 39–68, jan 2007.
[23] K. Emara, W. Woerndl, and J. H. Schlichter, “Vehicle tracking using

vehicular network beacons,” in IEEE 14th International Symposium onA

World of Wireless, Mobile and Multimedia Networks, WoWMoM 2013,

Madrid, Spain. IEEE, 2013, pp. 1–6.
[24] R. J. Fitzgerald, “Development of practical pda logic for multitarget

tracking by microprocessor,” in American Control Conference, 1986.
IEEE, 1986, pp. 889–898.

[25] D. B. Reid, “An algorithm for tracking multiple targets,” Automatic

Control, IEEE Transactions on, vol. 24, no. 6, pp. 843–854, 1979.
[26] M. Feiri, J. Petit, and F. Kargl, “The case for announcing pseudonym

changes,” in Proceeding of the 3rd GI/ITG KuVS Fachgespräch Inter-

Vehicle Communication (FG-IVC 2015), 2015, pp. 31–33.
[27] J. Petit, D. Broekhuis, M. Feiri, and F. Kargl, “Connected vehicles:

Surveillance threat and mitigation.” Black Hat Europe, 11/2015 2015,
pp. 1–12.

[28] L. Buttyán, T. Holczer, and I. Vajda, “On the effectiveness of changing
pseudonyms to provide location privacy in vanets,” in Proceedings of

the 4th European conference on Security and privacy in ad-hoc and

sensor networks, ser. ESAS’07. Berlin, Heidelberg: Springer-Verlag,
2007, pp. 129–141.

[29] R. W. van der Heijden, T. Lukaseder, and F. Kargl, “Veremi: A
dataset for comparable evaluation of misbehavior detection in vanets,”
in International Conference on Security and Privacy in Communication

Systems. Springer, 2018, pp. 318–337.
[30] H. Izakian, W. Pedrycz, and I. Jamal, “Fuzzy clustering of time series

data using dynamic time warping distance,” Engineering Applications

of Artificial Intelligence, vol. 39, pp. 235–244, 2015.
[31] Z. Du, C. Wu, T. Yoshinaga, K.-L. A. Yau, Y. Ji, and J. Li, “Federated

learning for vehicular internet of things: Recent advances and open
issues,” IEEE Open Journal of the Computer Society, vol. 1, pp. 45–61,
2020.

[32] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics, 2017, pp. 1273–1282.

[33] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, H. B. McMahan et al.,
“Towards federated learning at scale: System design,” arXiv preprint

arXiv:1902.01046, 2019.
[34] S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Distributed fed-

erated learning for ultra-reliable low-latency vehicular communications,”
IEEE Transactions on Communications, vol. 68, no. 2, pp. 1146–1159,
2019.

[35] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Differentially
private asynchronous federated learning for mobile edge computing in
urban informatics,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 3, pp. 2134–2143, 2019.

[36] Y. Liu, J. James, J. Kang, D. Niyato, and S. Zhang, “Privacy-preserving
traffic flow prediction: A federated learning approach,” IEEE Internet of

Things Journal, 2020.
[37] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Blockchain

empowered asynchronous federated learning for secure data sharing
in internet of vehicles,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 4, pp. 4298–4311, 2020.

[38] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Federated learning
for data privacy preservation in vehicular cyber-physical systems,” IEEE

Network, vol. 34, no. 3, pp. 50–56, 2020.
[39] D. Ye, R. Yu, M. Pan, and Z. Han, “Federated learning in vehicular

edge computing: A selective model aggregation approach,” IEEE Access,
vol. 8, pp. 23 920–23 935, 2020.

[40] N. I. Mowla, N. H. Tran, I. Doh, and K. Chae, “Federated learning-
based cognitive detection of jamming attack in flying ad-hoc network,”
IEEE Access, vol. 8, pp. 4338–4350, 2019.

[41] C. G. Cordero, E. Vasilomanolakis, A. Wainakh, M. Mühlhäuser, and

https://www.tesla.com/autopilot
https://www.timesdaily.com/archives/criminals-use-technology-to-track-victims
https://www.timesdaily.com/archives/criminals-use-technology-to-track-victims

14

S. Nadjm-Tehrani, “On generating network traffic datasets with synthetic
attacks for intrusion detection,” arXiv preprint arXiv:1905.00304, 2019.

[42] V. Belenko, V. Krundyshev, and M. Kalinin, “Synthetic datasets gen-
eration for intrusion detection in vanet,” in Proceedings of the 11th

International Conference on Security of Information and Networks,
2018, pp. 1–6.

[43] C. Sommer, R. German, and F. Dressler, “Bidirectionally coupled
network and road traffic simulation for improved ivc analysis,” IEEE

Transactions on Mobile Computing, vol. 10, no. 1, pp. 3–15, Jan 2011.
[44] SUMO, “Simulation of urban mobility,” http://sumo.sourceforge.net/,

2019.

http://sumo.sourceforge.net/

	Introduction
	Related Work
	Passive attacker models
	ML-based misbehavior detection systems
	Federated Learning

	System Model
	Passive Mobile Attackers Strategies
	Single Attacker
	Collaborative attackers

	Data Set and Feature Extraction
	Synthetic Data Generation
	Feature selection

	Self-labeling and Federating Learning
	Self-labelling
	Federated Learning
	Local Update
	Global Model Averaging

	Performance Evaluation
	Evaluation Metrics
	ML-Model Building
	Self-labeling Evaluation
	Federated Learning Evaluation
	Simulations

	Discussion
	Conclusion

